
CPS-2

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

TIME
COMPLEXITY

Programming Club IITM

progclubiitm.com

http://progclubiitm.com/

You have coded a solution to a
problem. How do you decide if
your code will finish running in

time?

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

How many operations does a computer
perform when this code is run?

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

1 assignment operation

n increment operations

n+1 comparison
operations

n additions +
n assignments

1 assignment operation

Total : 4n + 3 operations
progclubiitm.com

http://progclubiitm.com/

Big O notation

progclubiitm.com

Programming Club IITM

Given two functions f(n) and g(n), we say that f(n) is O(g(n)) if there exist
constants c > 0 and n0 >= 0 such that f(n) <= c*g(n) for all n >= n0.

http://progclubiitm.com/

Big O notation
Big O is used as a quick estimate to the amount of

time an algorithm takes.
Here are a few examples:

4n + 3 operations = O(n)
5 operations = O(1)
0.5n + 2n operations = O(n)2 2

2 + n! + n operations = O(n!)n 4

Its basically the largest term as n scales.
progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Relation between time complexity of expected solution and
problem constraints: (CF Judge can do around 1e8 operations/sec)

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

 Chocolate Question!
What’s the time complexity?

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Solution
i = n : j = 1, 2, 3, ... n ⟶ n ops
i = n/2 : j = 1, 2, 3, ... n/2 ⟶ [n/2] ops
i = n/4 : j = 1, 2, 3, ... n/4 ⟶ [n/4] ops
and so on. Summing them up,
total = n (1 + ½ + ¼ + ⅛ ...) ops
 < 2n ops

Answer : O (n)
progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Double Chocolate Question!
What’s the time complexity?

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Solution
i = 1 : j = 1, 2, 3, ... n ⟶ n ops
i = 2 : j = 2, 4, 6, ... n ⟶ [n/2] ops
i = 3 : j = 3, 6, 9, ... n ⟶ [n/3] ops
and so on. Summing them up,
total = n (1 + ½ + ⅓ + ... 1/n) ops

1 + ½ + ⅓ + ... 1/n < ln (n) + constant

Answer : O (n log n)
progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

PREFIX
SUMS

Programming Club IITM

progclubiitm.com

http://progclubiitm.com/

Given an array of ‘n’ integers, find the
sum of all the elements from (one-
based) index ‘l’ to ‘r’ (both inclusive)

Tr y t h i s o u t !

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Just iterate through the
required indices to get the

answer

S o l u t i o n

Time complexity? progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Given an array of ‘n’ integers and ‘q’ queries
of the form “ l r ”, find the sum of all the

elements from index ‘l’ to ‘r’ (both inclusive)
for each query

N o w t r y t h i s !

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Just iterate through the required
indices to get the answer for

each query

S o l u t i o n

Time complexity? progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

How can we speed it up?
Can we reuse previous work?

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Definition

Pref ix Sum Arrays

The ‘i’th element of the prefix sum array of ‘a’ is given by

pref[i] = a[1] + a[2] + ... + a[i] for 1 <= i <= n

We are given an array ‘a’ of ‘n’ elements

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

How does i t help?

Time complexity?

We need to find

a[l] + a[l + 1] + ... + a[r - 1] + a[r]

This can smartly be rewritten as

(a[1] + a[2] + ... a[r-1] + a[r]) - (a[1] + a[2] + ... a[l-1])

= pref[r] - pref[l-1]
progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

How does i t help?
So the answer to a query “ l r ”= pref[r] - pref[l-1]

which is O(1) per query, much better than the initial O(n)

For ‘q’ queries, the the complexity is O(q)

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Building the Prefix Sum Array

Time complexity?

Using the definition,
pref[i] = a[1] + a[2] + ... + a[i - 2] + a[i-1] +a[i]

pref[i-1] = a[1] + a[2] + ... + a[i-2] + a[i-1]
Subtracting both equations, we get

pref[i] = pref[i-1] + a[i]

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Back to the original probem
Now that we know the answer to a query “ l r ”= pref[r+1] - pref[l]

and we’ve built the prefix array, here is the final code

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Common Errors
Allocate size ‘n+1’ and not ‘n’ to the prefix array

Don’t forget to inititalize pref[0] = 0

Pay attention to the query ranges, for e.g. [l, r] [l, r) (l, r] (l, r)

Check whether l and r are zero-indexed or one-indexed

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Let’s solve one more problem
https://codeforces.com/problemset/problem/18/C

Programming Club IITM

https://codeforces.com/problemset/problem/18/C

Approach
Say the sum of all the elements is ‘S’.

Now, the sum of the elements in the left piece is
equal to a prefix sum ‘p’.

So the sum of the elements in the right piece = S - p
According to the question, p = S - p

So p = S/2

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Approach
Now iterate through the prefix array and count the

number of occurences of S/2

Let’s code it!

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Code

Programming Club IITM

progclubiitm.com

http://progclubiitm.com/

Extensions of Prefix sum
Like addition, the idea of prefix array can be extended

to other operations as well. For example,

Multiplication : pref[r+1]/pref[l] (beware of overflow)

Bitwise XOR: pref[r+1] ^ pref[l]

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

BINARY
SEARCH

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

Programming Club IITM

progclubiitm.com

A SMALL
PROBLLEM

Given a sorted list of n elements, find the
position of a target or where it should be
inserted to keep the list sorted.

http://progclubiitm.com/

HOW TO DO IT?
In the question, assume there are 10
elements in the array and we need to
find an element = 170

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

HOW TO DO IT?
Step 1:
Take a sorted array and find middle
element.

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

HOW TO DO IT?
Step 2:
Compare middle element with target
value (Key)

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

HOW TO DO IT?
Step 3:
Update search range and repeat

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

HOW TO DO IT?
Step 3:
Update search range and repeat

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

HOW TO DO IT?
Step 3:
Update search range and repeat

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

HOW TO DO IT?
Step 3:
Update search range and repeat

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

HOW TO DO IT?
Step 3:
Update search range and repeat

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

HOW TO DO IT?
Step 3:
Update search range and repeat

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

HOW TO DO IT?
Step 3:
Update search range and repeat

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

WHAT IS
IT?

Binary Search is a searching algorithm
that operates on a sorted or monotonic
search space, repeatedly dividing it into
halves to find a target value or optimal
answer in logarithmic time O(log N).

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

CODE FOR
BINARY
SEARCH

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

TRY THESE
https://codeforces.com/problemset/problem/1915/C

https://codeforces.com/problemset/problem/1873/E

progclubiitm.com

Programming Club IITM

https://codeforces.com/problemset/problem/1915/C
https://codeforces.com/problemset/problem/1873/E
http://progclubiitm.com/

STL

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

WHAT IS
IT?

STL is a collection of pre-built classes
and functions that make it easy to
manage data using common data
structures like vectors, stacks, and maps.
It saves time and effort by providing
ready-to-use, efficient algorithms and
containers.

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

CONTAINERS

Containers are the data structures used
to store objects and data according to
the requirement. Each container is
implemented as a template class that
also contains the methods to perform
basic operations on it. Every STL
container is defined inside its own header
file.

progclubiitm.com

Programming Club IITM

https://www.geeksforgeeks.org/cpp/containers-cpp-stl/
http://progclubiitm.com/

WHAT ALL
DOES IT
INCLUDE?

Vectors
strings
stacks
Queues
Priority Queues
Maps
Sets
Multisets
Multimaps
Unordered sets

 Many more...

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

ITERATORS

Iterators are the pointer like objects that
are used to point to the memory
addresses of STL containers. They are
one of the most important components
that contributes the most in connecting
the STL algorithms with the containers.
Iterators are defined inside the <iterator>
header file.

progclubiitm.com

Programming Club IITM

https://www.geeksforgeeks.org/cpp/introduction-iterators-c/
http://progclubiitm.com/

MAPS
C++ std::map is a container, allowing you
to store keys associated with values, for
easy and efficient retrieval.

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

KEY OPERATIONS

Insertion (Put/Insert): Adding a
new key-value pair to the map.

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

KEY OPERATIONS

Retrieval (Get/Search):
Accessing the value associated
with a given key.

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

KEY OPERATIONS

Deletion (Remove/Delete):
Removing a key-value pair
from the map.

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

KEY OPERATIONS

Update (Set/Modify):
Changing the value
associated with an existing
key

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

KEY OPERATIONS

Checking for Existence
(Contains Key/Has Key):
Determining if a specific key
is present in the map.

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

HOW DOES IT
WORK?

Visualisation: https://visualgo.net/en/bst

https://www.geeksforgeeks.org/dsa/binary
-search-tree-data-structure/

https://www.geeksforgeeks.org/dsa/introd
uction-to-red-black-tree/

progclubiitm.com

Programming Club IITM

https://visualgo.net/en/bst
https://www.geeksforgeeks.org/dsa/binary-search-tree-data-structure/
https://www.geeksforgeeks.org/dsa/binary-search-tree-data-structure/
https://www.geeksforgeeks.org/dsa/introduction-to-red-black-tree/
https://www.geeksforgeeks.org/dsa/introduction-to-red-black-tree/
http://progclubiitm.com/

TRY THIS
https://codeforces.com/problemset/problem/2133/A

progclubiitm.com

Programming Club IITM

https://codeforces.com/problemset/problem/2133/A
http://progclubiitm.com/

SETS
Sets are containers which stores unique elements
in some sorted order. By default, it is sorted
ascending order of the keys, but this can be
changed as per requirement.

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

KEY OPERATIONS

Insertion (Put/Insert): Adding a
new element pair to the set.

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

KEY OPERATIONS

Retrieval (Get/Search):
Accessing the an element by
value

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

KEY OPERATIONS

Deletion (Remove/Delete):
Removing a removing a
particular element from set.

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

KEY OPERATIONS

Checking for Existence:
Determining if a specific
element is present in set.

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

IMPLEMENTATION

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

TRY THIS
https://codeforces.com/problemset/problem/1703/B

progclubiitm.com

Programming Club IITM

https://codeforces.com/problemset/problem/1703/B
https://codeforces.com/problemset/problem/1703/B
http://progclubiitm.com/

MULTIISET
Multiset is an associative container similar
to the set, but it can store multiple
elements with same value. It is sorted in
increasing order by default, but it can be
changed to any desired order.

Read more at:
https://www.geeksforgeeks.org/cpp/m
ultiset-in-cpp-stl/

progclubiitm.com

Programming Club IITM

https://www.geeksforgeeks.org/cpp/multiset-in-cpp-stl/
https://www.geeksforgeeks.org/cpp/multiset-in-cpp-stl/
http://progclubiitm.com/

TRY THIS

progclubiitm.com

Programming Club IITM

https://codeforces.com/problemset/problem/1542/A

http://progclubiitm.com/
https://codeforces.com/problemset/problem/1542/A

POLICY BASED DS

Policy Based Data Structures (PBDS) are advanced data structures
provided in the GNU C++ library that extend the standard template
library (STL) containers with extra functionality like order-statistics
(finding the k-th smallest element) and order-of-key queries (finding
the rank of a key).

Headers : <ext/pb_ds/assoc_container.hpp>,
<ext/pb_ds/tree_policy.hpp>

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

WHY DO WE NEED THEM?
But they lack two very useful operations often required in competitive
programming and algorithm design:

1.Find by order → "What is the k-th smallest element in the set?"
2.Order of key → "How many elements are strictly smaller than a

given key?"
PBDS fills this gap by providing these order-statistics operations.

Read more at:
https://www.geeksforgeeks.org/cpp/policy-based-data-structures-
g/

progclubiitm.com

Programming Club IITM

https://www.geeksforgeeks.org/cpp/policy-based-data-structures-g/
https://www.geeksforgeeks.org/cpp/policy-based-data-structures-g/
http://progclubiitm.com/

THANK YOU!

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/

