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You have coded a solution to a
problem. How do you decide if
your code will finish running in

time?   
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How many operations does a computer
perform when this code is run?

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/


1 assignment operation

n increment operations

n+1 comparison
operations

n additions +
n assignments

1 assignment operation

Total : 4n + 3 operations
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Big O notation
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Given two functions f(n) and g(n), we say that f(n) is O(g(n)) if there exist
constants c > 0 and n0 >= 0 such that f(n) <= c*g(n) for all n >= n0.
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Big O notation
Big O is used as a quick estimate to the amount of

time an algorithm takes.
Here are a few examples:

4n + 3 operations = O(n)
5 operations = O(1)
0.5n  + 2n operations = O(n )2 2

2  + n! + n  operations = O(n!)n 4

Its basically the largest term as n scales.
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Relation between time complexity of expected solution and
problem constraints: (CF Judge can do around 1e8 operations/sec)
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 Chocolate Question!
What’s the time complexity?
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Solution
i = n : j = 1, 2, 3, ... n ⟶ n ops
i = n/2 : j = 1, 2, 3, ... n/2 ⟶ [ n/2 ] ops
i = n/4 : j = 1, 2, 3, ... n/4 ⟶ [ n/4 ] ops
and so on. Summing them up, 
total = n ( 1 + ½ + ¼ + ⅛ ... ) ops
         < 2n ops

Answer : O (n)
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Double Chocolate Question!
What’s the time complexity?
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Solution
i = 1 : j = 1, 2, 3, ... n ⟶ n ops
i = 2 : j = 2, 4, 6, ... n ⟶ [ n/2 ] ops
i = 3 : j = 3, 6, 9, ... n ⟶ [ n/3 ] ops
and so on. Summing them up, 
total = n ( 1 + ½ + ⅓ + ... 1/n ) ops

1 + ½ + ⅓ + ... 1/n < ln (n) + constant

Answer : O (n log n)
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Given an array of ‘n’ integers, find the
sum of all the elements from (one-
based) index ‘l’ to ‘r’ (both inclusive)

Tr y  t h i s  o u t !
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Just iterate through the
required indices to get the

answer 

S o l u t i o n

Time complexity? progclubiitm.com
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Given an array of ‘n’ integers and ‘q’ queries
of the form “ l r ”, find the sum of all the

elements from index ‘l’ to ‘r’ (both inclusive)
for each query

N o w  t r y  t h i s !
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Just iterate through the required
indices to get the answer for

each query 

S o l u t i o n
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How can we speed it up?
Can we reuse previous work?
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Definition

Pref ix Sum Arrays 

The ‘i’th element of the prefix sum array of ‘a’ is given by

pref[i] = a[1] + a[2] + ... + a[i] for 1 <= i <= n

We are given an array ‘a’ of ‘n’ elements
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How does i t  help?

Time complexity? 

We need to find

a[l] + a[l + 1] + ... + a[r - 1] + a[r]

This can smartly be rewritten as

( a[1] + a[2] + ... a[r-1] + a[r] ) - ( a[1] + a[2] + ... a[l-1] )

= pref[r] - pref[l-1] 
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How does i t  help?
So the answer to a query “ l r ”= pref[r] - pref[l-1] 

which is O(1) per query, much better than the initial O(n)

For ‘q’ queries, the the complexity is O(q)
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Building the Prefix Sum Array

Time complexity? 

Using the definition,
pref[i] = a[1] + a[2] + ... + a[i - 2] + a[i-1] +a[i] 

pref[i-1] = a[1] + a[2] + ... +  a[i-2] + a[i-1] 
Subtracting both equations, we get

pref[i] = pref[i-1] + a[i]
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Back to the original probem
Now that we know the answer to a query “ l r ”= pref[r+1] - pref[l] 

and we’ve built the prefix array, here is the final code
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Common Errors
Allocate size ‘n+1’ and not ‘n’ to the prefix array

Don’t forget to inititalize   pref[0] = 0

Pay attention to the query ranges, for e.g. [l, r] [l, r) (l, r] (l, r)

Check whether l and r are zero-indexed or one-indexed
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Let’s solve one more problem
https://codeforces.com/problemset/problem/18/C
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Approach
Say the sum of all the elements is ‘S’. 

Now, the sum of the elements in the left piece is 
equal to a prefix sum ‘p’.

So the sum of the elements in the right piece = S - p
According to the question, p = S - p

So p = S/2
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Approach
Now iterate through the prefix array and count the

number of occurences of S/2

Let’s code it!
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Code
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Extensions of Prefix sum
Like addition, the idea of prefix array can be extended

to other operations as well. For example,

Multiplication : pref[r+1]/pref[l] (beware of overflow) 

Bitwise XOR: pref[r+1] ^ pref[l]
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A SMALL
PROBLLEM

Given a sorted list of n elements, find the
position of a target or where it should be
inserted to keep the list sorted.
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HOW TO DO IT?
In the question, assume there are 10
elements in the array and we need to
find an element = 170
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HOW TO DO IT?
Step 1:
Take a sorted array and find middle
element.
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HOW TO DO IT?
Step 2: 
Compare middle element with target
value (Key)
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HOW TO DO IT?
Step 3:
Update search range and repeat
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HOW TO DO IT?
Step 3:
Update search range and repeat
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HOW TO DO IT?
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Update search range and repeat
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HOW TO DO IT?
Step 3:
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HOW TO DO IT?
Step 3:
Update search range and repeat
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HOW TO DO IT?
Step 3:
Update search range and repeat
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HOW TO DO IT?
Step 3:
Update search range and repeat
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WHAT IS 
IT?

Binary Search is a searching algorithm
that operates on a sorted or monotonic
search space, repeatedly dividing it into
halves to find a target value or optimal
answer in logarithmic time O(log N).
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CODE FOR
BINARY
SEARCH
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TRY THESE
https://codeforces.com/problemset/problem/1915/C

https://codeforces.com/problemset/problem/1873/E
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STL
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WHAT IS 
IT?

STL is a collection of pre-built classes
and functions that make it easy to
manage data using common data
structures like vectors, stacks, and maps.
It saves time and effort by providing
ready-to-use, efficient algorithms and
containers.
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CONTAINERS

Containers are the data structures used
to store objects and data according to
the requirement. Each container is
implemented as a template class that
also contains the methods to perform
basic operations on it. Every STL
container is defined inside its own header
file.
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WHAT ALL
DOES IT
INCLUDE?

Vectors
strings
stacks
Queues
Priority Queues
Maps
Sets
Multisets
Multimaps
Unordered sets

    Many more...
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ITERATORS

Iterators are the pointer like objects that
are used to point to the memory
addresses of STL containers. They are
one of the most important components
that contributes the most in connecting
the STL algorithms with the containers.
Iterators are defined inside the <iterator>
header file.
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MAPS
C++ std::map is a container, allowing you
to store keys associated with values, for
easy and efficient retrieval.
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KEY OPERATIONS

Insertion (Put/Insert): Adding a
new key-value pair to the map.
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KEY OPERATIONS

Retrieval (Get/Search):
Accessing the value associated
with a given key.
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KEY OPERATIONS

Deletion (Remove/Delete):
Removing a key-value pair
from the map.
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KEY OPERATIONS

Update (Set/Modify):
Changing the value
associated with an existing
key
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KEY OPERATIONS

Checking for Existence
(Contains Key/Has Key):
Determining if a specific key
is present in the map.
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HOW DOES IT
WORK?

Visualisation: https://visualgo.net/en/bst

https://www.geeksforgeeks.org/dsa/binary
-search-tree-data-structure/

https://www.geeksforgeeks.org/dsa/introd
uction-to-red-black-tree/
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TRY THIS
https://codeforces.com/problemset/problem/2133/A
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SETS
Sets are containers which stores unique elements
in some sorted order. By default, it is sorted
ascending order of the keys, but this can be
changed as per requirement.
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KEY OPERATIONS

Insertion (Put/Insert): Adding a
new element pair to the set.
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KEY OPERATIONS

Retrieval (Get/Search):
Accessing the an element by
value
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KEY OPERATIONS

Deletion (Remove/Delete):
Removing a removing a
particular element from set.

progclubiitm.com

Programming Club IITM

http://progclubiitm.com/


KEY OPERATIONS

Checking for Existence:
Determining if a specific
element is present in set.
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IMPLEMENTATION
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TRY THIS
https://codeforces.com/problemset/problem/1703/B
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MULTIISET
Multiset is an associative container similar
to the set, but it can store multiple
elements with same value. It is sorted in
increasing order by default, but it can be
changed to any desired order.

Read more at:
https://www.geeksforgeeks.org/cpp/m
ultiset-in-cpp-stl/
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TRY THIS
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POLICY BASED DS

Policy Based Data Structures (PBDS) are advanced data structures
provided in the GNU C++ library that extend the standard template
library (STL) containers with extra functionality like order-statistics
(finding the k-th smallest element) and order-of-key queries (finding
the rank of a key).

Headers :  <ext/pb_ds/assoc_container.hpp>,
<ext/pb_ds/tree_policy.hpp>
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WHY DO WE NEED THEM?
But they lack two very useful operations often required in competitive
programming and algorithm design:

1.Find by order → "What is the k-th smallest element in the set?"
2.Order of key → "How many elements are strictly smaller than a

given key?"
PBDS fills this gap by providing these order-statistics operations.

Read more at:
https://www.geeksforgeeks.org/cpp/policy-based-data-structures-
g/
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THANK YOU!
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